10,465 research outputs found

    Intersection numbers for normal functions

    Full text link
    We expand the notion of a normal function for a Hodge class on an even-dimensional complex projective manifold to the notion of a 'topological normal function' associated to any primitive integral cohomology class. The definition of the intersection number of two topological normal functions is the analogue of that given by Griffiths and Green for classical normal functions. We give a simple proof that the intersection number of the normal functions is the same as the intersection number of their corresponding cohomology classes.Comment: 7 page

    Deep space monitor communication satellite system Patent

    Get PDF
    Elimination of tracking occultation problems occurring during continuous monitoring of interplanetary missions by using Earth orbiting communications satellit

    Estimating the uncertainty of areal precipitation using data assimilation

    Get PDF
    We present a method to estimate spatially and temporally variable uncertainty of areal precipitation data. The aim of the method is to merge measurements from different sources, remote sensing and in situ, into a combined precipitation product and to provide an associated dynamic uncertainty estimate. This estimate should provide an accurate representation of uncertainty both in time and space, an adjustment to additional observations merged into the product through data assimilation, and flow dependency. Such a detailed uncertainty description is important for example to generate precipitation ensembles for probabilistic hydrological modelling or to specify accurate error covariances when using precipitation observations for data assimilation into numerical weather prediction models. The presented method uses the Local Ensemble Transform Kalman Filter and an ensemble nowcasting model. The model provides information about the precipitation displacement over time and is continuously updated by assimilation of observations. In this way, the precipitation product and its uncertainty estimate provided by the nowcasting ensemble evolve consistently in time and become flow-dependent. The method is evaluated in a proof of concept study focusing on weather radar data of four precipitation events. The study demonstrates that the dynamic areal uncertainty estimate outperforms a constant benchmark uncertainty value in all cases for one of the evaluated scores, and in half the number of cases for the other score. Thus, the flow dependency introduced by the coupling of data assimilation and nowcasting enables a more accurate spatial and temporal distribution of uncertainty. The mixed results achieved in the second score point out the importance of a good probabilistic nowcasting scheme for the performance of the method

    Term Graph Representations for Cyclic Lambda-Terms

    Full text link
    We study various representations for cyclic lambda-terms as higher-order or as first-order term graphs. We focus on the relation between `lambda-higher-order term graphs' (lambda-ho-term-graphs), which are first-order term graphs endowed with a well-behaved scope function, and their representations as `lambda-term-graphs', which are plain first-order term graphs with scope-delimiter vertices that meet certain scoping requirements. Specifically we tackle the question: Which class of first-order term graphs admits a faithful embedding of lambda-ho-term-graphs in the sense that: (i) the homomorphism-based sharing-order on lambda-ho-term-graphs is preserved and reflected, and (ii) the image of the embedding corresponds closely to a natural class (of lambda-term-graphs) that is closed under homomorphism? We systematically examine whether a number of classes of lambda-term-graphs have this property, and we find a particular class of lambda-term-graphs that satisfies this criterion. Term graphs of this class are built from application, abstraction, variable, and scope-delimiter vertices, and have the characteristic feature that the latter two kinds of vertices have back-links to the corresponding abstraction. This result puts a handle on the concept of subterm sharing for higher-order term graphs, both theoretically and algorithmically: We obtain an easily implementable method for obtaining the maximally shared form of lambda-ho-term-graphs. Also, we open up the possibility to pull back properties from first-order term graphs to lambda-ho-term-graphs. In fact we prove this for the property of the sharing-order successors of a given term graph to be a complete lattice with respect to the sharing order. This report extends the paper with the same title (http://arxiv.org/abs/1302.6338v1) in the proceedings of the workshop TERMGRAPH 2013.Comment: 35 pages. report extending proceedings article on arXiv:1302.6338 (changes with respect to version v2: added section 8, modified Proposition 2.4, added Remark 2.5, added Corollary 7.11, modified figures in the conclusion

    Surface motion in the pulsating DA white dwarf G 29-38

    Get PDF
    We present time-resolved spectrophotometry of the pulsating DA white dwarf G 29-38. As in previous broad-band photometry, the light curve shows the presence of a large number of periodicities. Many of these are combination frequencies, i.e., periodicities occurring at frequencies that are sums or differences of frequencies of stronger, real modes. We identify at least six real modes, and at least five combination frequencies. We measure line-of-sight velocities for our spectra and detect periodic variations at the frequencies of five of the six real modes, with amplitudes of up to 5 km/s. We argue that these variations reflect the horizontal surface motion associated with the g-mode pulsations. No velocity signals are detected at any of the combination frequencies, confirming that the flux variations at these frequencies do not reflect physical pulsation, but rather mixing of frequencies due to a non-linear transformation in the outer layers of the star. We discuss the amplitude ratios and phase differences found for the velocity and light variations, as well as those found for the real modes and their combination frequencies, both in a model-independent way and in the context of models based on the convective-driving mechanism. In a companion paper, we use the wavelength dependence of the amplitudes of the modes to infer their spherical degree.Comment: 12 pages, 5 figures, mn.sty. Accepted for publication in MNRA

    Mode identification from time-resolved spectroscopy of the pulsating white dwarf G 29-38

    Get PDF
    We have used time-resolved spectroscopy to measure the colour dependence of pulsation amplitudes in the DAV white dwarf G 29-38. Model atmospheres predict that mode amplitudes should change with wavelength in a manner that depends on the spherical harmonic degree l of the mode. This dependence arises from the convolution of mode geometry with wavelength-dependent limb darkening. Our analysis of the six largest normal modes detected in Keck observations of G 29-38 reveals one mode with a colour dependence different from the other five, permitting us to identify the l value of all six modes and to test the model predictions. The Keck observations also show pulsation amplitudes that are unexpectedly asymmetric within absorption lines. We show that these asymmetries arise from surface motions associated with the non-radial pulsations (which are discussed in detail in a companion paper). By incorporating surface velocity fields into line profile calculations, we are able to produce models that more closely resemble the observations.Comment: 10 pages, 9 figures, mn.sty. Accepted for publication in MNRA

    Relaxation of a Colloidal Particle into a Nonequilibrium Steady State

    Full text link
    We study the relaxation of a single colloidal sphere which is periodically driven between two nonequilibrium steady states. Experimentally, this is achieved by driving the particle along a toroidal trap imposed by scanned optical tweezers. We find that the relaxation time after which the probability distributions have been relaxed is identical to that obtained by a steady state measurement. In quantitative agreement with theoretical calculations the relaxation time strongly increases when driving the system further away from thermal equilibrium
    corecore